
Journal of Sound and Vibration (1999) 220(5), 847–859
Article No. jsvi.1998.1991, available online at http://www.idealibrary.com.on

BOUNDARY CONDITIONING TECHNIQUE FOR
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Boundary conditions of a structure will strongly influence their natural
frequencies. By controlling the conditions at the boundaries in a non-homo-
geneous and non-uniform fashion, it is shown that the structural natural
frequencies can be manipulated in a favorable fashion. The technique is named
boundary conditioning. An analytical model has been developed for a plate type
structure to illustrate the boundary conditioning technique. The results are
presented and discussed, along with references to steel pan tuning.
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1. INTRODUCTION

The natural frequencies of structures are strongly influenced by the boundary
conditions. Changing the boundary conditions from simply supported to clamped
conditions in beams and plates can more than double their respective natural
frequencies [1, 2]. The boundary conditions of real structures are not always
homogeneous, such as clamped or simply supported. The boundary conditions
may be flexible either in translation or rotation [3–5]. Furthermore, even along a
single edge of a two-dimensional structure such as a plate, the boundary conditions
may not be uniform and may change along the edge [6]. This suggests that it is
possible to control the natural frequencies by properly controlling the boundary
conditions along the edges.

In structures which are supported at several points or lines within the domain
of the structures, such as in periodically supported beams or plates, such supports
may be considered as providing boundary conditions for the structure. Hence, the
designer has a lot of flexibility in positioning the supports in a structure in order
to obtain specific natural frequencies for the structure. Such control of the
frequency characteristics of a structure has many applications in the control of
the noise transmission properties of structures such as in aircraft fuselages. In the
present study, the concept of boundary conditioning is investigated on a plate type
structure, supported on four translational and rotational type springs distributed
along the four edges.
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2. ANALYSIS

Consider a rectangular plate, as shown in Figure 1. The plate is assumed to be
supported at all the four edges with both translational and rotational springs [7]
with stiffness per unit length of KT and KR , respectively.

The plate eigenvalues are estimated using boundary characteristic orthogonal
polynomials in the Rayleigh–Ritz method [8]. These orthogonal polynomials are
generated so as to satisfy the free edge conditions on all boundaries.

The flexural deflection of the plate is assumed as

W(x, y)= s
m

s
n

Amnfm (x)8n (y), (1)

where x= j/a, y= h/b; j and h are co-ordinates of the plate, a and b are
dimensions of the plate with a= a/b, Amn is the deflection coefficient of each term
describing the plate deflection in equation (1), and fm (x) and 8n (y) are boundary
characteristic orthogonal polynomials.

The maximum total strain energy Umax and the maximum kinetic energy Tmax of
the structure are
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Figure 1. Structural scheme for boundary conditioning.
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Substitution of deflection equation (1) into strain energy and kinetic energy
expressions (2) and (3), and optimization of the Rayleigh quotient with respect to
Aij result in the eigenvalue equation
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The solution of equation (4) yields both eigenvalues and mode shapes of the
system. The different boundary conditions can be generated by different values of
KT and KR . The eigenvalues of the system depend upon both translational and
rotational stiffness for a given plate. The conditioning of the boundary by altering
both the rotational stiffness and translational stiffness affects the flow of
distribution of vibrational energy in the structure and hence the eigenvalues and
natural frequencies.

The conditions of K*T,i =0 and K*R,i =0 correspond to free edge condition,
K*R,i =0 and very high values of K*T,i correspond to a simply supported condition,
while very high values of both K*T,i and K*R,i correspond to a clamped condition.
The tuning of a structure by boundary conditioning thus means ensuring proper
distribution of stiffness on the boundary such that the structure exhibits prescribed
patterns of natural frequencies. In engineering applications, the natural
frequencies may need to be prescribed in order to be away from exciting
frequencies. In order to illustrate the concept of boundary conditioning to
manipulate the natural frequencies, the prescribed natural frequencies pattern is
chosen as a harmonic combination of natural frequencies in this study. The
possible harmonic combinations for a square plate through boundary conditioning
are found out by solving equation (4) for eigenfrequencies at different discrete
values of four rotational stiffnesses (K*R,i , where i=1, 2, 3, 4) and four
translational stiffnesses (K*T,i , where i=1, 2, 3, 4) placed at the edges. It is found
that the ranges of rotational stiffness between 0 and 103 and translational stiffness



.   .850

between 0 and 105 only have a significant effect on the vibration behavior of the
plate and hence the boundary conditioning is demonstrated in these ranges of
stiffnesses.

The harmonic combination is represented by h=1ijk where i, j and k are
integers and are the ratios of the first three dominating eigenfrequencies with
respect to the fundamental eigenfrequency. It was felt that requiring i, j and k to
be 2, 3 and 4, respectively, would be too stringent a requirement for compliance.
Hence, in the present study, i, j and k were considered to be an acceptable
combination if they fall close to any integers. In an actual engineering structure
these ratios could be prescribed real numbers indicating the desired natural
frequency patterns.

At each boundary condition defined by different values of boundary stiffnesses,
the closest available harmonic combination of h=1ijk is the one which gives
minimum error function (Lh ), given by

Lh = s
Nf

n=2

min $0ln − ql1

ql1 1
2

[q= i, j, k%,
where Nf is the number of eigenfrequencies considered in the combination=4, and
ln is the nth eigenvalue. In this study, the integers i, j and k that could give a
minimum value for Lh were checked up to a value of 25.

The value of Lh indicates the relative closeness of the arrangement of
eigenfrequencies to a harmonic combination of h=1ijk. A value of Lh closer to
zero shows the availability of a perfect harmonic combination of h. In the present
investigation, a value of 0·02 for Lh is considered accurate enough to consider the
natural frequencies as a harmonic combination. Thus, it becomes possible to
manipulate the natural frequencies into a required harmonic combination by
minimizing Lh through boundary conditioning, as explained in the next section.

3. RESULTS AND DISCUSSION

In order to illustrate the boundary conditioning technique, the boundary
stiffness distribution of a square plate is arranged in such a way as to have
harmonic relations among the natural frequencies of the plate. Denoting the
harmonic order of the natural frequencies with respect to the fundamental natural
frequency by their corresponding numbers, the different sets of harmonic
combinations obtained for a square plate by boundary conditioning of the four
edges are 1234, 1235, 1236, 1346, 1356, 1357, 1358 and 1368 for Lh E 0·02. A value
of Lh E 0·02, which is considered to indicate the presence of a harmonic
combination, is possible to obtain over a range of boundary conditions. But the
optimum or reference boundary condition for a set of harmonic combinations
results in the least value of Lh ideally close to zero. The increase of Lh from 0·02
as boundary conditions (stiffness) are changed, indicates either the destruction of
the present harmonic combination or the presence of other harmonic
combinations.

The following results present the effect of boundary conditioning on achieving
a particular set of harmonic combination. The results are presented for a few
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T 1

Reference stiffness values for optimum conditioning

Reference values
ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

Harmonics K*T,1,ref K*T,2,ref K*T,3,ref K*T,4,ref K*R,1,ref K*R,2,ref K*R,3,ref K*R,4,ref

1234 105 10 105 103 0 10 10 0
1236 10 10 10 10 10 10 102 102

1357 10 10 103 103 10 10 0 0

combinations of harmonics taken four at a time. In order to study the effect of
boundary conditioning on the objective function of a particular combination of
harmonics, a relative stiffness parameter is defined with respect to the boundary
stiffness values corresponding to the optimum conditioning, called reference
values, as follows:

csh =
$s

4

i=1

(K*T,i −K*T,i,ref )2 + s
4

i=1

(K*R,i −K*R,i,ref )2%
s
4

i=1

K*2
T,i,ref + s

4

i=1

K*2
R,i,ref

,

where K*,,ref is the reference value corresponding to optimum boundary
conditioning.

The reference stiffness values for three sets of combinations of harmonics
corresponding to the minimum objective function L1ijk is given for a combination

Figure 2. Effect of KT,1 and KT,3 on L1234: –Q–, KT,1; –E–, KT,3.
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Figure 3. Effect of KT,2 and KT,4 on L1234: –E–, KT,2; –Q–, KT,4.

of harmonics h=1ijk in order to demonstrate the effect of boundary conditioning;
see Table 1. A value of 105 in the table indicates an infinitely stiff condition.

At the optimum boundary stiffness distribution, it can be seen that the relative
stiffness parameter sh is equal to 0. The effect of changing the individual boundary
stiffness values on the natural frequencies are presented in Figures 2–10. In these
figures, the parameter L1ijk showing the deviation from the desired harmonic
combination is plotted against the relative stiffness parameter sh , which is affected
by changing individual boundary stiffness values. In all these figures, while the
boundary stiffness value under study is varied from 0 to the optimum value and
beyond, the other stiffnesses are held at their optimum values. In all the figures,
the solid arrows indicate the direction of relative stiffening of the boundary with
respect to the optimum, while the broken arrows indicate a relative weakening of
the boundary.

3.1.  1234

The variation of error function corresponding to 1234 harmonics (L1234) in
relation to relative boundary stiffness parameter sh are given in Figures 2–5.

3.1.1. Effect of translational stiffness

The influence of translational stiffnesses on sides 1 and 3 are shown in Figure 2.
When KT,1 is varied from 0 to 105, the deviation parameter L1234 reduces from 1·86
towards zero. The behavior is identical when KT,3 is varied from 0 to 105 while
keeping the other stiffness values at the optimum. The influence of translational
stiffnesses on sides 2 and 4 are shown in Figure 3. The relative weakening of KT,2
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Figure 4. Effect of KR,1 and KR,3 on L1234: –E–, KR,1; –Q–, KR,3.

from the optimum stiffness value of 10 has insignificant effect on the quality of
harmonic combination 1234, while the relative weakening of KT,4 from the
optimum value of 103 destroys the harmonic combination 1234 as shown in
Figure 3.

Figure 5. Effect of KR,2 and KR,4 on L1234: –E–, KR,2; –Q–, KR,4.
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Figure 6. Effect of KT,1, KT,2, KT,3 and KT,4, on L1236: Q, KT,1; - - - - , KT,2; R, KT,3; ––, KT,4.

3.1.2. Effect of rotational stiffness

The effect of varying the rotational stiffnesses on sides 1 and 3 are shown in
Figure 4. The relative stiffening of KR,1 from the reference value of zero aggravates
the harmonics while the relative stiffening of KR,3 is ineffective. The relative
weakening of KR,3 from the reference value affects the harmonics drastically. But
Figure 5 indicates that this harmonic combination is insensitive to relative changes
in stiffnesses KR,2 and KR,4.

3.2.  1236

The effect of boundary conditioning by changing the translational stiffnesses at
the edges is shown in Figure 6. This figure shows that the harmonic combination
1236 is quite sensitive to translational stiffness on any edge. Translational
strengthening and weakening on any side in relation to reference values destroy
the harmonics 1236 rapidly as shown in Figure 6. The effect of boundary
conditioning by changing the rotational stiffnesses is shown in Figure 7. It is seen
that the harmonic combination 1236 is less sensitive to changes in rotational
stiffnesses than translational stiffnesses. Further, rotational weakening affects the
harmonics more rapidly than the rotational strengthening.

3.3.  1357

The effect of boundary conditioning on harmonic combination 1357 is shown
in Figures 8–10. The effect of change in rotational stiffnesses is less significant than
that due to change in translational stiffnesses. Rotational stiffnesses on sides 3 and
4 have similar effect on harmonics and rotational strengthening on these sides
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deteriorates the harmonics 1357, while the variation of rotational stiffnesses on
sides 1 and 2 has negligible effect on the desired harmonic combination. The
relative change in translational stiffnesses from their reference values has a
significant effect on harmonic combination 1357 as seen from Figures 9 and 10.

The above results confirm that the method of obtaining a combination of
harmonics for a given structure through boundary conditioning is quite feasible.
These results also show the complexity and uniqueness associated with each
harmonic combination in terms of distribution of boundary stiffness.

4. ROLE OF BOUNDARY CONDITIONING IN TUNING OF STEEL PANS

The boundary conditioning technique discussed above can be seen as a general
technique to manipulate the natural frequencies of a structure by changing the
boundary conditions of the existing or newly created boundaries. Since the
vibration behavior of the structure is dependent on the distribution of material
properties, structural geometry and boundary conditions, the required pattern of
natural frequencies can be achieved by conditioning any of the mentioned
parameters in isolation or in combination.

Part of the tuning process of a steel pan instrument employs this boundary
conditioning technique. A steel pan is essentially a hemispherical shell type
structure, made by hammering the flat end of a tar drum. Circular, elliptical or
trapezoidal areas called notes are marked on the hemispherical surface by
indenting the periphery of these regions using dot punches resulting in the creation

Figure 7. Effect of KR,1, KR,2, KR,3 and KR,4, on L1236: Q, KR,1; - - - - , KR,2; R, KR,3; ––, KR,4.
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Figure 8. Effect of KR,1, KR,2, KR,3 and KR,4, on L1357: Q, KR,1; - - - - , KR,2; R, KR,3; ––, KR,4.

of new rotationally weak boundaries of the notes. During the process of steel pan
making, the areas in between these notes are hardened by heat treatment
representing translationally stiff boundaries. The localization of note vibration and

Figure 9. Effect of KT,1 and KT,2 on L1357: Q, KT,1; ––, KT,2.
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Figure 10. Effect of KT,3 and KT,4 on L1357: Q, KT,3; ––, KT,4.

the coarse tuning are achieved by grooving, punching, hammering, peening,
stretching, heat treatment, etc. [9]. Hence, the individual note regions that act as
individual vibrator elements are capable of producing distinct tones by tuning each
note to generate a distinct fundamental natural frequency and a combination of
harmonics in isolation or in pair with adjacent notes. Considering the individual
note as a shell-like structure and replacing its surrounding areas with equivalent
springs, has been suggested by Achong [10].

The model of a rectangular plate with rotational and translational stiffnesses at
the edges may be considered as a very simplistic example of an individual localized
vibrator, and varying the stiffness values in order to achieve a certain relation
among natural frequencies resembles the boundary conditioning part of the tuning
operation in steel pans. The final tuning process of the steel pan includes the
manipulation of several other non-linear parameters, particularly in view of the
curvature of the shell note area, residual stresses, etc., as suggested by Achong
[10, 11]. It can be seen from the above results and discussion that the boundary
conditioning becomes one of the techniques, like modifying geometry and material
properties, responsible for structural tuning of a particular note in order to obtain
a desired harmonic relation among its natural frequencies.

5. CONCLUSIONS

A method has been developed to study the effect of boundary conditioning on
vibration behavior and hence the harmonics of a rectangular plate. The boundary
conditioning procedure implies the modification of translational and rotational
stiffness distribution on the edges in order to achieve the required results. The
boundary conditioning technique can be applied to different problems of interest,
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such as the noise transmission into an aircraft fuselage interior. The results of the
present study confirm that the natural frequencies are strongly influenced by
boundary conditioning.
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APPENDIX: NOMENCLATURE

A deflection coefficient
a dimension of the plate in the x direction
b dimension of the plate in the y direction
D flexural rigidity of the plate
h thickness of the plate
K*T,i normalized translational stiffness=KT,ia3/D
K*R,i normalized rotational stiffness=KR,ia/D
ls length of the sth side
Umax,p strain energy of the plate due to bending
UT,s potential energy of the sth side translational spring
UR,s potential energy of the sth side rotational spring
Ws deflection along the sth side
W's slope along the sth side
x normalized co-ordinate= j/a
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y normalized co-ordinate= h/b
a= a/b
l eigenvalue=rha4v2/D
h co-ordinate of the plate
r mass density of the plate
v natural frequency
j co-ordinate of the plate
( )' differentiation with respect to x
(.) differentiation with respect to y
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